AI资讯新闻榜单内容搜索-Transforme

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Transforme
NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

在视觉处理任务中,Vision Transformers(ViTs)已发展成为主流架构。然而,近期研究表明,ViT 模型的密集特征中会出现部分与局部语义不一致的伪影(artifact),进而削弱模型在精细定位类任务中的性能表现。因此,如何在不耗费大量计算资源的前提下,保留 ViT 模型预训练核心信息并消除密集特征中的伪影?

来自主题: AI技术研报
7007 点击    2025-11-20 09:33
何恺明重磅新作:Just image Transformers让去噪模型回归基本功

何恺明重磅新作:Just image Transformers让去噪模型回归基本功

何恺明重磅新作:Just image Transformers让去噪模型回归基本功

大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。

来自主题: AI技术研报
5671 点击    2025-11-19 16:42
3D视觉被过度设计?字节Depth Anything 3来了,谢赛宁点赞

3D视觉被过度设计?字节Depth Anything 3来了,谢赛宁点赞

3D视觉被过度设计?字节Depth Anything 3来了,谢赛宁点赞

机器之心报道 编辑:泽南、杨文 现在,只需要一个简单的、用深度光线表示训练的 Transformer 就行了。 这项研究证明了,如今大多数 3D 视觉研究都存在过度设计的问题。 本周五,AI 社区最热

来自主题: AI技术研报
6890 点击    2025-11-16 11:27
Transformer作者重磅预言:AI无寒冬,推理革命引爆万亿市场!

Transformer作者重磅预言:AI无寒冬,推理革命引爆万亿市场!

Transformer作者重磅预言:AI无寒冬,推理革命引爆万亿市场!

Transformer的火种已燃烧七年。如今,推理模型(Reasoning Models)正点燃第二轮革命。Transformer共同作者、OpenAI研究员Łukasz Kaiser预判:未来一两年,AI会极速跃升——瓶颈不在算法,而在GPU与能源。

来自主题: AI资讯
7366 点击    2025-11-15 17:00
何必DiT!字节首次拿着自回归,单GPU一分钟生成5秒720p视频 | NeurIPS'25 Oral

何必DiT!字节首次拿着自回归,单GPU一分钟生成5秒720p视频 | NeurIPS'25 Oral

何必DiT!字节首次拿着自回归,单GPU一分钟生成5秒720p视频 | NeurIPS'25 Oral

一篇入围顶会NeurIPS’25 Oral的论文,狠狠反击了一把DiT(Diffusion Transformer)。这篇来自字节跳动商业化技术团队的论文,则是提出了一个名叫InfinityStar的方法,一举兼得了视频生成的质量和效率,为视频生成方法探索更多可能的路径。

来自主题: AI技术研报
7572 点击    2025-11-14 14:25
RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。

来自主题: AI技术研报
9965 点击    2025-11-14 10:21
谷歌192亿买他回来,现在只想让他闭嘴

谷歌192亿买他回来,现在只想让他闭嘴

谷歌192亿买他回来,现在只想让他闭嘴

谷歌花27亿美元(约192亿人民币)挖来的Transformer“贡献最大”作者Noam Shazzer,现在点燃了火药桶。

来自主题: AI资讯
8683 点击    2025-11-12 10:23
终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

大模型「灾难性遗忘」问题或将迎来突破。近日,NeurIPS 2025收录了谷歌研究院的一篇论文,其中提出一种全新的「嵌套学习(Nested Learning)」架构。实验中基于该框架的「Hope」模型在语言建模与长上下文记忆任务中超越Transformer模型,这意味着大模型正迈向具备自我改进能力的新阶段。

来自主题: AI技术研报
6996 点击    2025-11-10 09:56